ГЛАВНАЯ
   
ТЕМЫ
- - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Основы кинематики
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Материя.Пространство время. Механическое движение
Скалярные и векторные величины.  Действия  над  векторами
Проекции вектора на координатные оси
Решение задач по теме "Действия над векторами.  Проекции вектора на  координатные оси"
Виды механического движения. Задача кинематики
Относительность движения. Система отчета. Путь и перемещение
Равномерное прямолинейное движение. Скорость.
Графические представления равномерного прямолинейного движения
Решение задач по теме "Равномерное движение"
Неравномерное движение. Мгновенная скорость
Сложение скорости. Самостоятельная работа по теме "Равномерное движение"
Решение задач по теме "Неравномерное движение. Сложение скоростей"
Лабораторная работа1 Определение абсолютной и относительной погрешностей прямых измерений
Обобщение и систематизация знаний по теме "Равномерное и неравномерное  движение. Сложение скоростей"
Контрольная работа 1 по теме "Равномерное и неравномерное  движение. Сложение скоростей"
Ускорение
Скорость при прямолинейном движении с постоянным ускорением
Решение задач по теме "Ускорение. Скорость при прямолинейном движении при постоянном ускорении"
Путь, перемещение и координата тела прямолинейном движении с постоянным    ускорением
Лабораторная работа 2 Определение ускорения при равноускоренном прямолинейном движении
Решение задач по теме "Путь, перемещение и координата тела при прямолинейном движении с постоянным ускорением
Лабораторная работа 3 Изучение Закономерностей равноускоренного движения
Криволинейное движение. Линейная и угловая скорость при движении тела по окружности. Самостоятельная работа по теме "Равноускоренное движение"
Ускорение точки при её движении по окружности
Лабораторная работа 4 Изучение движения тела по окружности" 
Решение задач по теме "Криволинейное движение"
Обобщение и систематизация знаний по теме "Кинематика"
Контрольная работа 2 по теме "Кинематика"
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Основы динамики

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Законы сохранения в механике
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 
 
 
Меню 
ТЕСТЫ
ЗАДАЧИ
ПРИМЕРЫ
ЗА РАМКАМИ УЧЕБНИКА
 
ОЛИМПИАДЫ
ЗАДАЧИ
ПРИМЕРЫ
ТЕСТЫ
РАЗНОЕ
 
 

Сложение скорости. Самостоятельная работа по теме "Равномерное движение"

Классическая механика

В классической механике абсолютная скорость точки равна векторной сумме её относительной и переносной скоростей:

Простым языком: Скорость движения тела относительно неподвижной системы отсчёта равна векторной сумме скорости этого тела относительно подвижной системы отсчета и скорости самой подвижной системы отсчета относительно неподвижной системы.

Примеры

  1. Абсолютная скорость мухи, ползущей по радиусу вращающейся граммофонной пластинки, равна сумме скорости её движения относительно пластинки и той скорости, с которой её переносит пластинка за счёт своего вращения.

  2. Если человек идёт по коридору вагона со скоростью 5 километров в час относительно вагона, а вагон движется со скоростью 50 километров в час относительно Земли, то человек движется относительно Земли со скоростью 50 + 5 = 55 километров в час, когда идёт по направлению движения поезда, и со скоростью 50 — 5 = 45 километров в час, когда он идёт в обратном направлении. Если человек в коридоре вагона движется относительно Земли со скоростью 55 километров в час, а поезд со скоростью 50 километров в час, то скорость человека относительно поезда 55 — 50 = 5 километров в час.

  3. Если волны движутся относительно берега со скоростью 30 километров в час, а корабль также со скоростью 30 километров в час, то волны движутся относительно корабля со скоростью 30 — 30 = 0 километров в час, то есть они становятся неподвижными.

Релятивистская механика

В XIX веке классическая механика столкнулась с проблемой распространения этого правила сложения скоростей на оптические (электромагнитные) процессы. По существу произошёл конфликт между двумя идеями классической механики, перенесёнными в новую область электромагнитных процессов.

Например, если рассмотреть пример с волнами на поверхности воды из предыдущего раздела и попробовать обобщить на электромагнитные волны, то получится противоречие с наблюдениями (см., например, опыт Майкельсона).

Классическое правило сложения скоростей соответствует преобразованию координат от одной системы осей к другой системе, движущиеся относительно первой без ускорения. Если при таком преобразовании мы сохраняем понятие одновременности, то есть сможем считать одновременными два события не только при их регистрации в одной системе координат, но и во всякой другой инерциальной системе, то преобразования называются галилеевыми. Кроме того, при галилеевых преобразованиях пространственное расстояние между двумя точками — разница между их координатами в одной инерциальной системе осчёта — всегда равно их расстоянию в другой инерциальной системе.

Вторая идея — принцип относительности. Находясь на корабле, движущимся равномерно и прямолинейно, нельзя обнаружить его движение какими-то внутренними механическими эффектами. Распространяется ли этот принцип на оптические эффекты? Нельзя ли обнаружить абсолютное движение системы по вызванным этим движением оптическим или, что то же самое электродинамическими эффектами? Интуиция (довольно явным образом связанная с классическим принципом относительности) говорит, что абсолютное движение нельзя обнаружить какими бы то ни было наблюдениями. Но если свет распространяется с определённой скоростью относительно каждой из движущихся инерциальных систем, то эта скорость изменится при переходе от одной системы к другой. Это вытекает из классического правила сложения скоростей. Говоря математическим языком, величина скорости света не будет инвариантна относительно галлилеевых преобразованиям. Это нарушает принцип относительности, вернее, не позволяет распространить принцип относительности на оптические процессы. Таким образом электродинамика разрушила связь двух, казалось бы, очевидных положений классической физики — правила сложения скоростей и принципа относительности. Более того, эти два положения применительно к электродинамике оказались несовместимыми.

Теория относительности даёт ответ на этот вопрос. Она расширяет понятие принципа относительности, распространяя его и на оптические процессы. Правило сложение скоростей при этом не отменяется совсем, а лишь уточняется для больших скоростей с помощью преобразования Лоренца:

Можно заметить, что в случае, когда , преобразования Лоренца переходят в преобразования Галилея. То же самое происходит в случае, когда . Это говорит о том, что специальная теория относительности совпадает с механикой Ньютона либо в мире с бесконечной скоростью света, либо при скоростях, малых по сравнению со скоростью света. Последнее объясняет, каким образом сочетаются эти две теории — первая является уточнением второй.

Самостоятельная работа по теме "Равномерное движение"

 
 

 

 
 
Copyright © 2011 © СОШ №2 им. Н.П. Массонова г.Свислочь © Синица А.А., Михальчик В.